Properties of Aerogels

Below is an interactive properties table. Select one or more materials from the list and click “Display Properties” to see information about properties of the different types of aerogels side-by-side. If you choose more than three types of aerogel, click in the table and push the left and right keys to scroll, otherwise there should be a scroll bar all the way at the bottom to help you scroll across the table.



$word)
{
if ($key == 0 or !in_array($word, $smallwordsarray)) $words[$key] = ucwords($word);
}
$newtitle = implode(‘ ‘, $words);
return $newtitle;
}

$materialsproperties=array(
‘values’=> array(
array(‘class’=>’Class’),
array(‘composition’=>’Composition’),
array(‘density_range’=>’Density Range’),
array(‘surface_area’=>’Surface Area’),
array(‘pore_volume’=>’Pore Volume’),
array(‘primary_particle_size’=>’Primary Particle Size’),
array(‘average_pore_size’=>’Average Pore Size’),
array(‘transparency’=>’Transparency’),
array(‘appearance’=>’Appearance’),
array(‘monolithicity’=>’Monolithicity’),
array(‘flexibility’=>’Flexibility’),
array(‘gel_synthesis’=>’Gel Synthesis’),
array(‘drying_method’=>’Drying Method’),
array(‘thermal_conductivity_at_room_temperature’=>’Thermal Conductivity at Room Temperature’),
array(‘electrical_conductivity’=>’Electrical Conductivity’),
array(‘index_of_refraction’=>’Index of Refraction’),
array(‘dielectric_constant_(dc)’=>’Dielectric Constant (DC)’),
array(‘young\’s_modulus’=>’Young\’s Modulus’),
array(‘coefficient_of_thermal_expansion’=>’Coefficient of Thermal Expansion’),
array(‘compressive_strength’=>’Compressive Strength’),
array(‘speed_of_sound’=>’Speed of Sound’),
array(‘invented_by’=>’Invented By’),
array(‘major_players’=>’Major Players’),
array(‘special_properties’=>’Special Properties’),
array(‘note_1’=>’Note 1’),
array(‘note_2’=>’Note 2’),
array(‘reference_1’=>’Reference 1’),
array(‘reference_2’=>’Reference 2’),
array(‘reference_3’=>’Reference 3’),
array(‘reference_4’=>’Reference 4’),
array(‘reference_5’=>’Reference 5’),
),
‘units’=> array(
array(‘class’=>”),
array(‘composition’=>”),
array(‘density_range’=>’g cm-3‘),
array(‘surface_area’=>”),
array(‘pore_volume’=>’cm g-1‘),
array(‘primary_particle_size’=>’nm’),
array(‘average_pore_size’=>’nm’),
array(‘transparency’=>”),
array(‘appearance’=>”),
array(‘monolithicity’=>”),
array(‘flexibility’=>”),
array(‘gel_synthesis’=>”),
array(‘drying_method’=>”),
array(‘thermal_conductivity_at_room_temperature’=>’W m-1 K-1‘),
array(‘electrical_conductivity’=>’S cm-1‘),
array(‘index_of_refraction’=>’Dimensionless’),
array(‘dielectric_constant_(dc)’=>’Dimensionless’),
array(‘young\’s_modulus’=>’MPa’),
array(‘coefficient_of_thermal_expansion’=>’microstrain °C-1‘),
array(‘compressive_strength’=>’MPa’),
array(‘speed_of_sound’=>’m s-1‘),
array(‘invented_by’=>”),
array(‘major_players’=>”),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘silica_aerogel’=> array(
array(‘class’=>’Silica’),
array(‘composition’=>’SiO2‘),
array(‘density_range’=>’0.0011-0.650’),
array(‘surface_area’=>’500-950’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’2.0-3.0’),
array(‘average_pore_size’=>’20’),
array(‘transparency’=>’Clear to foggy’),
array(‘appearance’=>’Transparent or white with blue cast from Rayleigh scattering’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Hydrolysis of silicon alkoxide or acid-driven condensation of waterglass’),
array(‘drying_method’=>’Supercritical CO2 or high-temperature drying from organic solvent’),
array(‘thermal_conductivity_at_room_temperature’=>’0.016-0.03’),
array(‘electrical_conductivity’=>’1×10-18‘),
array(‘index_of_refraction’=>’1.002-1.046’),
array(‘dielectric_constant_(dc)’=>’1.008-2.27’),
array(‘young\’s_modulus’=>’0.05-400’),
array(‘coefficient_of_thermal_expansion’=>’2’),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>’70-1300’),
array(‘invented_by’=>’Samuel Kistler’),
array(‘major_players’=>’Arlon Hunt, Mike Ayers, Tom Tillotson, C. Jeff Brinker, Debra Rolison, Peter Tsou’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’T.M. Tillotson, L.W. Hrubesh, “Transparent Ultralow-Density Silica Aerogels Prepared by a Two-Step Sol-Gel Process”, 1991, Lawrence-Livermore National Laboratory Lab-Authored Report 218496.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘alumina_aerogel’=> array(
array(‘class’=>’Metal Oxide, Main Group’),
array(‘composition’=>’Al2O3‘),
array(‘density_range’=>’0.03-0.1 (alkoxide) 0.05-0.2 (epoxide-assisted)’),
array(‘surface_area’=>’150-370 (alkoxide) 290-710 (epoxide-assisted)’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Clear to foggy’),
array(‘appearance’=>’Transparent or white with blue cast from Rayleigh scattering’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Epoxide-assisted gelation of aluminum salts or hydolysis of aluminum tri-sec-butoxide’),
array(‘drying_method’=>’Supercritical CO2 or high-temperature drying from organic solvent’),
array(‘thermal_conductivity_at_room_temperature’=>’29’),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>’0.55 (0.037 g cm-3 density)’),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Bulant Yoldas’),
array(‘major_players’=>’Ted Baumann, Alex Gash, John Poco’),
array(‘special_properties’=>’Alumina aerogels typically have an unusual leaf-like structure’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Hydrolysis from aluminum tri-sec-butoxide J.F. Poco, J.H. Satcher, Jr., L.W. Hrubesh, J. Non-Crystalline Solids, 2001, 285, 57-63.’),
array(‘reference_2’=>’Epoxide-assisted gelation Theodore F. Baumann, Alexander E. Gash, Sarah C. Chinn, April M. Sawvel, Robert S. Maxwell, and Joe H. Satcher, Jr. Chem. Mater., 2005, 17 (2), 395–401’),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘carbon_aerogel’=> array(
array(‘class’=>’Carbon’),
array(‘composition’=>’C’),
array(‘density_range’=>’0.02-0.5’),
array(‘surface_area’=>’600-800’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’3.0-20’),
array(‘average_pore_size’=>’7.0-20.0’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Opaque black, shiny or matte’),
array(‘monolithicity’=>’Monolithic, charcoal like’),
array(‘flexibility’=>’Rigid, breaks like charcoal’),
array(‘gel_synthesis’=>’Polymerization of 1,3-dihydroxybenzene with methanal’),
array(‘drying_method’=>’Supercritical CO2 followed by pyrolysis at 400°C-1050°C under inert gas’),
array(‘thermal_conductivity_at_room_temperature’=>’120-320’),
array(‘electrical_conductivity’=>’1-14.7’),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Rick Pekala’),
array(‘major_players’=>’Ted Baumann, Jochen Fricke, Jeff Long, Debra Rolison’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘resorcinol-formaldehyde_aerogel’=> array(
array(‘class’=>’Organic Polymer’),
array(‘composition’=>’Polymer of 1,3-dihydroxybenzene and methanal (phenolic resin)’),
array(‘density_range’=>’0.02-0.6’),
array(‘surface_area’=>’350-900’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’3.0-20’),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Partially transulcent to opaque’),
array(‘appearance’=>’Dark red-brown, matte’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Polymerization of 1,3-dihydroxybenzene with methanal’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Rick Pekala’),
array(‘major_players’=>”),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non-Crystalline Solids, 1992, 145, 90-98.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘melamine-formaldehyde_aerogel’=> array(
array(‘class’=>’Organic Polymer’),
array(‘composition’=>’Melamine-formaldehyde polymer’),
array(‘density_range’=>’.1-.75′),
array(‘surface_area’=>’875-1025’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’<50'), array('average_pore_size'=>”),
array(‘transparency’=>’Transparent’),
array(‘appearance’=>’Colorless’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>”),
array(‘gel_synthesis’=>”),
array(‘drying_method’=>”),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>’0.5-500’),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Rick Pekala’),
array(‘major_players’=>”),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non-Crystalline Solids, 1992, 145, 90-98.’),
array(‘reference_2’=>’C.T. Alviso, R.W. Pekala, 1991, Lawrence Livermore National Laboratory Lab-Authored Report 216141.’),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘metal-doped_carbon_aerogel’=> array(
array(‘class’=>”),
array(‘composition’=>’C with metal nanoparticles of Fe, Co, Ni, or Cu’),
array(‘density_range’=>’0.02-0.04’),
array(‘surface_area’=>’500-800’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’C=2.1, Metal=5-35’),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Opaque black, shiny or matte’),
array(‘monolithicity’=>’Monolithic, charcoal like’),
array(‘flexibility’=>’Breaks like charcoal’),
array(‘gel_synthesis’=>’Polymerization of 2,4-dihydroxybenzene with formaldehyde, ion exchange of gel by soaking in metal salt’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>’1.0-10’),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Ted Baumann’),
array(‘major_players’=>’Ted Baumman, Ruowen Fu, Stephen A. Steiner III’),
array(‘special_properties’=>’Fe-doped carbon aerogels can catalyze nanotube growth, Ni-doped carbon aerogel contain graphitic nanoribbons’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘chromium_oxide_aerogel’=> array(
array(‘class’=>’Metal Oxide, Transition Metal’),
array(‘composition’=>’Cr2O3‘),
array(‘density_range’=>’0.28’),
array(‘surface_area’=>’490-520’),
array(‘pore_volume’=>’1.6-2.3’),
array(‘primary_particle_size’=>’5’),
array(‘average_pore_size’=>’11.0-18.0’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Dark green or blue’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Epoxide-assisted gelation of chromium nitrate or chloride’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>”),
array(‘major_players’=>’Alex Gash, Tom Tillotson’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Alexander E. Gash, Thomas M. Tillotson, Joe H. Satcher, Jr., Lawrence W. Hrubesh, Randall L. Simpson, J. Non-Crystalline Solids, 2001, 285, 22-28.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘iron_oxide_aerogel’=> array(
array(‘class’=>’Metal Oxide, Transition Metal’),
array(‘composition’=>’Fe2O3‘),
array(‘density_range’=>”),
array(‘surface_area’=>’390’),
array(‘pore_volume’=>’3.75’),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’23’),
array(‘transparency’=>’Partially translucent to opaque’),
array(‘appearance’=>’Rust red-brown’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Epoxide-assisted gelation of iron nitrate or chloride’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>”),
array(‘major_players’=>’Alex Gash, Tom Tillotson’),
array(‘special_properties’=>’Phase can be controlled through wet chemistry’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Thomas M. Tillotson, Alexander E. Gash, Randall L. Simpson, Lawrence W. Hrubesh, Joe H. Satcher, Jr., John F. Poco, J. Non-Crystalline Solids, 285 (1-3) 2001, 338-345.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘lanthanide_oxide_aerogel’=> array(
array(‘class’=>’Metal Oxide, Lanthanide Group’),
array(‘composition’=>’L2O3, where L=a lanthanide group metal’),
array(‘density_range’=>’0.18’),
array(‘surface_area’=>’354-382’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Transparent, color depends on metal oxide’),
array(‘appearance’=>’Oxides of holmium or erbium = pink, oxides of praseodymium or samarium = yellow, oxide of neodymium = purple, others Rayleigh scatter blue or white’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Epoxide-assisted gelation of lanthanide chloride’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>”),
array(‘major_players’=>’Tom Tillotson’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Nicholas Leventis, Plousia Vassilaras, Eve F. Fabrizio, Amala Dass, J. Mater. Chem., 2007, 17, 1502–1508.’),
array(‘reference_2’=>’T.M. Tillotson, W.E. Sunderland, I.W. Thomas, L.W. Hrubesh, 1993, Lawrence Livermore National Laboratory Lab-Authored Report 220798.’),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘molybdenum_oxide_aerogel’=> array(
array(‘class’=>’Metal Oxide, Transition Metal’),
array(‘composition’=>’MoO3‘),
array(‘density_range’=>’0.19-0.21’),
array(‘surface_area’=>’150-190’),
array(‘pore_volume’=>’0.4-3.4’),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’25-75’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Dark blue’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Hydrolysis of molybdenum trichloride isopropoxide exchanged with acetonitrile ligands’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Winny Dong, Bruce Dunn’),
array(‘major_players’=>”),
array(‘special_properties’=>’Molybdenum oxide aerogels show reversible lithium intercolation up to 1.2 Li/Mo’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Winny Dong, Bruce Dunn, J. Non-Crystalline Solids, 1998, 225, 135-140.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘silica_x-aerogel,_isocyanate_crosslinked’=> array(
array(‘class’=>’Crosslinked, Inorganic’),
array(‘composition’=>’SiO2, coated with isocyanate shell’),
array(‘density_range’=>’0.5-0.6’),
array(‘surface_area’=>’140-160’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’18.8-20’),
array(‘transparency’=>’Foggy or opaque’),
array(‘appearance’=>’Blue cast from Rayleigh scattering or white/off-white’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Some flexibility’),
array(‘gel_synthesis’=>’Hydrolysis of silicon alkoxide, gel crosslinked with isocynate’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>’44-90’),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Nicholas Leventis’),
array(‘major_players’=>’Nicholas Leventis, Mary Ann Meador’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’N. Leventis, A. Palczer, L. McCorkle, G. Zhang, C. Sotiriou-Leventis J. Sol-Gel Sci. Tech. 2005, 35, 99-105.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘silica_x-aerogel,_isocyanate_crosslinked,_ambiently_dried’=> array(
array(‘class’=>’Crosslinked, Inorganic’),
array(‘composition’=>’SiO2, coated with isocyanate shell’),
array(‘density_range’=>’0.5-0.7’),
array(‘surface_area’=>’117-147’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’16.5-20.5’),
array(‘transparency’=>’Foggy or opaque’),
array(‘appearance’=>’Blue cast from Rayleigh scattering or white/off-white’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Some flexibility’),
array(‘gel_synthesis’=>’Hydrolysis of silicon alkoxide, gel crosslinked with isocynate’),
array(‘drying_method’=>’Evaporatively dried from pentane’),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>’53-97’),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Nicholas Leventis’),
array(‘major_players’=>’Nicholas Leventis, Mary Ann Meador’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’N. Leventis, A. Palczer, L. McCorkle, G. Zhang, C. Sotiriou-Leventis J. Sol-Gel Sci. Tech. 2005, 35, 99-105.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘lanthanide_oxide_x-aerogel,_isocyanate_crosslinked’=> array(
array(‘class’=>’Crosslinked, Inorganic’),
array(‘composition’=>’L2O3, where L=a lanthanide group metal, coated with isocyanate shell’),
array(‘density_range’=>’0.42’),
array(‘surface_area’=>’137-175’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’18.8-20’),
array(‘transparency’=>’Foggy or opaque’),
array(‘appearance’=>’Oxides of holmium or erbium = pink, oxides of praseodymium or samarium = yellow, oxide of neodymium = purple, others clear or white’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Somewhat flexible’),
array(‘gel_synthesis’=>’Epoxide-assisted gelation of lanthanide chloride followed by crosslinking with isocyante’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>’13.3-29.3’),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Nicholas Leventis’),
array(‘major_players’=>’Nicholas Leventis’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Nicholas Leventis, Plousia Vassilaras, Eve F. Fabrizio, Amala Dass, J. Mater. Chem., 2007, 17, 1502–1508.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘aerojello_(gelatin_aerogel)’=> array(
array(‘class’=>’Organic, Biological’),
array(‘composition’=>’Hydrolyzed Collagen’),
array(‘density_range’=>’0.04’),
array(‘surface_area’=>”),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’White, typically deformed from original gel shape’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Spongey’),
array(‘gel_synthesis’=>’Dissolution of gelatin powder in hot water followed by cooling’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Samuel Kistler’),
array(‘major_players’=>”),
array(‘special_properties’=>’Edible’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘aspen_spaceloft™_6200’=> array(
array(‘class’=>’Silica Composite’),
array(‘composition’=>’Hydrophobic Silica’),
array(‘density_range’=>’0.1’),
array(‘surface_area’=>’784’),
array(‘pore_volume’=>’3.1’),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Opaque white’),
array(‘appearance’=>”),
array(‘monolithicity’=>’Cast onto a fiber batting’),
array(‘flexibility’=>’Flexible blanket’),
array(‘gel_synthesis’=>’Hydrolysis of silicon alkoxide’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>’0.013’),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Aspen Aerogels’),
array(‘major_players’=>’George Gould’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘aspen_spaceloft™_6250’=> array(
array(‘class’=>’Silica Composite’),
array(‘composition’=>’Hydrophobic Silica’),
array(‘density_range’=>’0.1’),
array(‘surface_area’=>’775’),
array(‘pore_volume’=>’3.1’),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>”),
array(‘appearance’=>”),
array(‘monolithicity’=>’Cast onto a fiber batting’),
array(‘flexibility’=>’Flexible blanket’),
array(‘gel_synthesis’=>’Hydrolysis of silicon alkoxide’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>’0.012’),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Aspen Aerogels’),
array(‘major_players’=>’George Gould’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘carbon_nanotube_aerogel’=> array(
array(‘class’=>’Carbon’),
array(‘composition’=>’Carbon nanotubes, with or without poly(vinyl alcohol) reinforcement’),
array(‘density_range’=>’0.01-0.06’),
array(‘surface_area’=>”),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Black’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Somewhat spongey’),
array(‘gel_synthesis’=>’Agglomeration of surfactant-dispersed carbon nanotubes with or without poly(vinyl alcohol)’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>’10-7-10-2‘),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Mateusz Bryning, Arjun Yodh’),
array(‘major_players’=>”),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Mateusz B. Bryning, Daniel E. Milkie, Mohammad F. Islam, Lawrence A. Hough, James M. Kikkawa, Arjun G. Yodh, Advanced Materials, 2007, 19, 5, 661-664.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘iron_aerogel’=> array(
array(‘class’=>’Metal’),
array(‘composition’=>’Fe, Fe3C’),
array(‘density_range’=>’0.046’),
array(‘surface_area’=>’163-416’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’25-30’),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Dark, rusty brown’),
array(‘monolithicity’=>’Monolithic, tends to crack’),
array(‘flexibility’=>’Not flexible’),
array(‘gel_synthesis’=>’Resorcinol-formaldehyde polymerization and epoxide-assisted gelation of iron chloride with epichlorohydrin in the same solution’),
array(‘drying_method’=>’Supercritical CO2 followed by pyrolysis at 400°C-1050°C under inert gas’),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Nicholas Leventis’),
array(‘major_players’=>”),
array(‘special_properties’=>’Hybrid resorcinol-formaldehyde/iron oxide aerogels reduce to iron aerogels upon pyrolysis under inert atmosphere, ratio of resorcniol-formldehyde to iron oxide must be one to one, iron aerogels are magnetic’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Nicholas Leventis, Naveen Chandrasekaran, Chariklia Sotiriou-Leventis, Arif Mumtaz, J. Mater. Chem., 2009, 19, 63–65’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘iron_nanofoam’=> array(
array(‘class’=>’Metal’),
array(‘composition’=>’Fe’),
array(‘density_range’=>’0.011-0.04’),
array(‘surface_area’=>’10-258’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’14-23’),
array(‘average_pore_size’=>’20-200; 1000-3000’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Gray’),
array(‘monolithicity’=>’Monolithic, ashy’),
array(‘flexibility’=>’Ashy, not flexible’),
array(‘gel_synthesis’=>’No gel precursor, formed directly from combustion of FeBTA complex under Ar’),
array(‘drying_method’=>”),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>”),
array(‘major_players’=>”),
array(‘special_properties’=>’Iron nanofoams are magnetic’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’B.C. Tappan, M.H. Huynh, M.A. Hiskey, D.E. Chavez, E.P. Luther, J.T. Mang, S.F. Son, J. Am. Chem. Soc., 2006, 128, 6589-6594.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘cadmium_selenide_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide’),
array(‘composition’=>’CdSe’),
array(‘density_range’=>”),
array(‘surface_area’=>’106-124’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’2.5 – 4.0 [1]’),
array(‘average_pore_size’=>’16-29’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Orange to red, depending on particle size’),
array(‘monolithicity’=>’Can be monolithic but fragile’),
array(‘flexibility’=>’Brittle’),
array(‘gel_synthesis’=>’Oxidative removal of thiolate from preformed nanoparticles’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock & Indika Arachchige’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’Fluoresces green. Aerogels exhibit the quantum confinement properties of the nanoparticle precursors with an optical bandgap dependent on (1) primary particle size; (2) aerogel density; (3) annealing protocol (if any). Typical ranges are from 2.15-2.25 eV. Aerogels also exhibit associated band edge photoluminescence.’),
array(‘note_1’=>’from TEM and XRD’),
array(‘note_2’=>”),
array(‘reference_1’=>’J. L. Mohanan, I. U. Arachchige, S. L. Brock, “Porous Semiconductor Chalcogenide Aerogels,” Science, 2005, 307, 397-401.’),
array(‘reference_2’=>’Gel synthesis: Gacoin, J. Sol-Gel Sci. Technol. 1998, 13, 61’),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘cadmium_sulfide_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide’),
array(‘composition’=>’CdS’),
array(‘density_range’=>’0.07’),
array(‘surface_area’=>’239-250’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’2.0-5.0’),
array(‘average_pore_size’=>’29-30’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Yellow’),
array(‘monolithicity’=>’Can be monolithic but fragile’),
array(‘flexibility’=>’Brittle’),
array(‘gel_synthesis’=>’Oxidative removal of thiolate from preformed nanoparticles’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock & Jaya L. Mohanan’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’Aerogels exhibit the quantum confinement properties of the nanoparticle precursors with an optical bandgap dependent on (1) primary particle size; (2) aerogel density; (3) annealing protocol (if any). Typical ranges are from 2.2-2.7 eV. Aerogels also exhibit associated band edge photoluminescence.’),
array(‘note_1’=>’from TEM and XRD’),
array(‘note_2’=>”),
array(‘reference_1’=>’Primary Reference: J. L. Mohanan, S. L. Brock, “A New Addition to the Aerogel Community: Unsupported CdS Aerogels with Tunable Optical Properties,” Journal of Non-Crystalline Solids, 2004, 350, 1-8. ‘),
array(‘reference_2’=>’Gel synthesis: Gacoin, J. Sol-Gel Sci. Technol. 1998, 13, 61’),
array(‘reference_3’=>’Particles exhibit cubic (zinc blende) structure’),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘zinc_sulfide_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide’),
array(‘composition’=>’ZnS’),
array(‘density_range’=>’0.35’),
array(‘surface_area’=>’182-202’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’2.5-4.0’),
array(‘average_pore_size’=>’15-30’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’White’),
array(‘monolithicity’=>’Can be monolithic but fragile’),
array(‘flexibility’=>’Brittle’),
array(‘gel_synthesis’=>’Oxidative removal of thiolate from preformed nanoparticles’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock, Jaya L. Mohanan, and Indika Arachchige’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’Aerogels exhibit the quantum confinement properties of the nanoparticle precursors with an optical bandgap dependent on (1) primary particle size; (2) aerogel density; (3) annealing protocol (if any). A typical value is 3.85 eV.’),
array(‘note_1’=>’from TEM and XRD’),
array(‘note_2’=>”),
array(‘reference_1’=>’J. L. Mohanan, I. U. Arachchige, S. L. Brock, “Porous Semiconductor Chalcogenide Aerogels,” Science, 2005, 307, 397-401.’),
array(‘reference_2’=>’Gel synthesis: Gacoin, J. Sol-Gel Sci. Technol. 1998, 13, 61’),
array(‘reference_3’=>’Particles exhibit cubic (zinc blende) structure’),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘lead_sulfide_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide’),
array(‘composition’=>’PbS’),
array(‘density_range’=>”),
array(‘surface_area’=>’119-141’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’2.5-4.0’),
array(‘average_pore_size’=>’21-45’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Dark brown’),
array(‘monolithicity’=>’Can be monolithic but fragile’),
array(‘flexibility’=>’Brittle’),
array(‘gel_synthesis’=>’Oxidative removal of thiolate from preformed nanoparticles’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock, Jaya L. Mohanan, and Indika Arachchige’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’Aerogels exhibit the quantum confinement properties of the nanoparticle precursors with an optical bandgap dependent on (1) primary particle size; (2) aerogel density; (3) annealing protocol (if any). A typical value is 0.37 eV. ‘),
array(‘note_1’=>’from TEM and XRD’),
array(‘note_2’=>”),
array(‘reference_1’=>’J. L. Mohanan, I. U. Arachchige, S. L. Brock, “Porous Semiconductor Chalcogenide Aerogels,” Science, 2005, 307, 397-401.’),
array(‘reference_2’=>’Gel synthesis: Gacoin, J. Sol-Gel Sci. Technol. 1998, 13, 61’),
array(‘reference_3’=>’Particles exhibit cubic (zinc blende) structure’),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘cadmium_selenide/zinc_sulfide_composite_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide, Composite’),
array(‘composition’=>’CdSe core nanoparticles wrapped with ZnS shells (Cd:Zn = 1:3.4)’),
array(‘density_range’=>’0.08’),
array(‘surface_area’=>’188-234’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’4.4-5.7’),
array(‘average_pore_size’=>’21-23’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Orange with yellow-green emission (4.4 nm CdSe core); red with orange emission (5.1 nm CdSe core); brown with red emission (5.6 nm CdSe core)’),
array(‘monolithicity’=>’Can be monolithic but fragile’),
array(‘flexibility’=>’Brittle’),
array(‘gel_synthesis’=>’Oxidative removal of thiolate from preformed nanoparticles’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock & Indika Arachchige’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’Aerogels exhibit the quantum confinement properties of the nanoparticle precursors with an optical bandgap dependent on the particle size of the CdSe cores. Unlike “naked” CdSe aerogels, the band-edge photoluminescence is strong and there is no evidence of trap-state features ‘),
array(‘note_1’=>’from TEM and XRD’),
array(‘note_2’=>”),
array(‘reference_1’=>’I. U. Arachchige, S. L. Brock “Highly Luminescent Quantum Dot Monoliths” Journal of the American Chemical Society, 2007, 129, 1840-1841.’),
array(‘reference_2’=>’Gel synthesis: Gacoin, J. Sol-Gel Sci. Technol. 1998, 13, 62’),
array(‘reference_3’=>’Particles were prepared from high temperature methods and exhibit the hexagonal (wurtzite) structure type.’),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘germanium_sulfide_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide’),
array(‘composition’=>’GeSx (x=1.7-2.5)’),
array(‘density_range’=>”),
array(‘surface_area’=>’677-755’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’12.0-13.0’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’White’),
array(‘monolithicity’=>’No’),
array(‘flexibility’=>”),
array(‘gel_synthesis’=>’Thiolysis of germanium ethoxide’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock & Kennedy Kalebaila’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’GeSx aerogels are amorphous with extremely high surface areas relative to other chalcogenide aerogels. GeSx gels undergo oxidation and formation of GeO2 if air is introduced to the wet gel; aerogels do not form crystalline GeO2 upon exposure to air.’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’K. K. Kalebaila, D. G. Georgiev, S. L. Brock “Synthesis and Characterization of Germanium Sulfide Aerogels” Journal of Non-Crystalline Solids, 2006, 352, 232-240.’),
array(‘reference_2’=>’Stanic et al., J. Mater. Res. 1996, 11, 363.’),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
);

echo “

“;
echo “
“;
echo “
“;
echo “

“;

for ($i=0;$i$atype)
{
echo “

“;
echo “

\n”;
for ($j=0;$j$btype)
{
if ($b == $a)
{echo “

\n”;
$foundone=1;}
}

}
if ($foundone == 0)
{echo “

\n”;
$foundone=0;}

};
echo “

“;

};

};
echo “

Values

\n”;
echo “

Units

\n”;
for ($j=0;$j

$thingtolookfor

\n”;
}
echo “

“;
echo $atype;
echo “
\n”;

echo “

“;
echo $materialsproperties[‘units’][$i][$a];
echo “
$btype

“;
echo “

“;

?>

Comments are closed.