Properties of Aerogels
{
if ($key == 0 or !in_array($word, $smallwordsarray)) $words[$key] = ucwords($word);
}
$newtitle = implode(‘ ‘, $words);
return $newtitle;
}
$materialsproperties=array(
‘values’=> array(
array(‘class’=>’Class’),
array(‘composition’=>’Composition’),
array(‘density_range’=>’Density Range’),
array(‘surface_area’=>’Surface Area’),
array(‘pore_volume’=>’Pore Volume’),
array(‘primary_particle_size’=>’Primary Particle Size’),
array(‘average_pore_size’=>’Average Pore Size’),
array(‘transparency’=>’Transparency’),
array(‘appearance’=>’Appearance’),
array(‘monolithicity’=>’Monolithicity’),
array(‘flexibility’=>’Flexibility’),
array(‘gel_synthesis’=>’Gel Synthesis’),
array(‘drying_method’=>’Drying Method’),
array(‘thermal_conductivity_at_room_temperature’=>’Thermal Conductivity at Room Temperature’),
array(‘electrical_conductivity’=>’Electrical Conductivity’),
array(‘index_of_refraction’=>’Index of Refraction’),
array(‘dielectric_constant_(dc)’=>’Dielectric Constant (DC)’),
array(‘young\’s_modulus’=>’Young\’s Modulus’),
array(‘coefficient_of_thermal_expansion’=>’Coefficient of Thermal Expansion’),
array(‘compressive_strength’=>’Compressive Strength’),
array(‘speed_of_sound’=>’Speed of Sound’),
array(‘invented_by’=>’Invented By’),
array(‘major_players’=>’Major Players’),
array(‘special_properties’=>’Special Properties’),
array(‘note_1’=>’Note 1’),
array(‘note_2’=>’Note 2’),
array(‘reference_1’=>’Reference 1’),
array(‘reference_2’=>’Reference 2’),
array(‘reference_3’=>’Reference 3’),
array(‘reference_4’=>’Reference 4’),
array(‘reference_5’=>’Reference 5’),
),
‘units’=> array(
array(‘class’=>”),
array(‘composition’=>”),
array(‘density_range’=>’g cm-3‘),
array(‘surface_area’=>”),
array(‘pore_volume’=>’cm g-1‘),
array(‘primary_particle_size’=>’nm’),
array(‘average_pore_size’=>’nm’),
array(‘transparency’=>”),
array(‘appearance’=>”),
array(‘monolithicity’=>”),
array(‘flexibility’=>”),
array(‘gel_synthesis’=>”),
array(‘drying_method’=>”),
array(‘thermal_conductivity_at_room_temperature’=>’W m-1 K-1‘),
array(‘electrical_conductivity’=>’S cm-1‘),
array(‘index_of_refraction’=>’Dimensionless’),
array(‘dielectric_constant_(dc)’=>’Dimensionless’),
array(‘young\’s_modulus’=>’MPa’),
array(‘coefficient_of_thermal_expansion’=>’microstrain °C-1‘),
array(‘compressive_strength’=>’MPa’),
array(‘speed_of_sound’=>’m s-1‘),
array(‘invented_by’=>”),
array(‘major_players’=>”),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘silica_aerogel’=> array(
array(‘class’=>’Silica’),
array(‘composition’=>’SiO2‘),
array(‘density_range’=>’0.0011-0.650’),
array(‘surface_area’=>’500-950’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’2.0-3.0’),
array(‘average_pore_size’=>’20’),
array(‘transparency’=>’Clear to foggy’),
array(‘appearance’=>’Transparent or white with blue cast from Rayleigh scattering’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Hydrolysis of silicon alkoxide or acid-driven condensation of waterglass’),
array(‘drying_method’=>’Supercritical CO2 or high-temperature drying from organic solvent’),
array(‘thermal_conductivity_at_room_temperature’=>’0.016-0.03’),
array(‘electrical_conductivity’=>’1×10-18‘),
array(‘index_of_refraction’=>’1.002-1.046’),
array(‘dielectric_constant_(dc)’=>’1.008-2.27’),
array(‘young\’s_modulus’=>’0.05-400’),
array(‘coefficient_of_thermal_expansion’=>’2’),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>’70-1300’),
array(‘invented_by’=>’Samuel Kistler’),
array(‘major_players’=>’Arlon Hunt, Mike Ayers, Tom Tillotson, C. Jeff Brinker, Debra Rolison, Peter Tsou’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’T.M. Tillotson, L.W. Hrubesh, “Transparent Ultralow-Density Silica Aerogels Prepared by a Two-Step Sol-Gel Process”, 1991, Lawrence-Livermore National Laboratory Lab-Authored Report 218496.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘alumina_aerogel’=> array(
array(‘class’=>’Metal Oxide, Main Group’),
array(‘composition’=>’Al2O3‘),
array(‘density_range’=>’0.03-0.1 (alkoxide) 0.05-0.2 (epoxide-assisted)’),
array(‘surface_area’=>’150-370 (alkoxide) 290-710 (epoxide-assisted)’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Clear to foggy’),
array(‘appearance’=>’Transparent or white with blue cast from Rayleigh scattering’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Epoxide-assisted gelation of aluminum salts or hydolysis of aluminum tri-sec-butoxide’),
array(‘drying_method’=>’Supercritical CO2 or high-temperature drying from organic solvent’),
array(‘thermal_conductivity_at_room_temperature’=>’29’),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>’0.55 (0.037 g cm-3 density)’),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Bulant Yoldas’),
array(‘major_players’=>’Ted Baumann, Alex Gash, John Poco’),
array(‘special_properties’=>’Alumina aerogels typically have an unusual leaf-like structure’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Hydrolysis from aluminum tri-sec-butoxide J.F. Poco, J.H. Satcher, Jr., L.W. Hrubesh, J. Non-Crystalline Solids, 2001, 285, 57-63.’),
array(‘reference_2’=>’Epoxide-assisted gelation Theodore F. Baumann, Alexander E. Gash, Sarah C. Chinn, April M. Sawvel, Robert S. Maxwell, and Joe H. Satcher, Jr. Chem. Mater., 2005, 17 (2), 395–401’),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘carbon_aerogel’=> array(
array(‘class’=>’Carbon’),
array(‘composition’=>’C’),
array(‘density_range’=>’0.02-0.5’),
array(‘surface_area’=>’600-800’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’3.0-20’),
array(‘average_pore_size’=>’7.0-20.0’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Opaque black, shiny or matte’),
array(‘monolithicity’=>’Monolithic, charcoal like’),
array(‘flexibility’=>’Rigid, breaks like charcoal’),
array(‘gel_synthesis’=>’Polymerization of 1,3-dihydroxybenzene with methanal’),
array(‘drying_method’=>’Supercritical CO2 followed by pyrolysis at 400°C-1050°C under inert gas’),
array(‘thermal_conductivity_at_room_temperature’=>’120-320’),
array(‘electrical_conductivity’=>’1-14.7’),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Rick Pekala’),
array(‘major_players’=>’Ted Baumann, Jochen Fricke, Jeff Long, Debra Rolison’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘resorcinol-formaldehyde_aerogel’=> array(
array(‘class’=>’Organic Polymer’),
array(‘composition’=>’Polymer of 1,3-dihydroxybenzene and methanal (phenolic resin)’),
array(‘density_range’=>’0.02-0.6’),
array(‘surface_area’=>’350-900’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’3.0-20’),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Partially transulcent to opaque’),
array(‘appearance’=>’Dark red-brown, matte’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Polymerization of 1,3-dihydroxybenzene with methanal’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Rick Pekala’),
array(‘major_players’=>”),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non-Crystalline Solids, 1992, 145, 90-98.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘melamine-formaldehyde_aerogel’=> array(
array(‘class’=>’Organic Polymer’),
array(‘composition’=>’Melamine-formaldehyde polymer’),
array(‘density_range’=>’.1-.75′),
array(‘surface_area’=>’875-1025’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’<50'),
array('average_pore_size'=>”),
array(‘transparency’=>’Transparent’),
array(‘appearance’=>’Colorless’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>”),
array(‘gel_synthesis’=>”),
array(‘drying_method’=>”),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>’0.5-500’),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Rick Pekala’),
array(‘major_players’=>”),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non-Crystalline Solids, 1992, 145, 90-98.’),
array(‘reference_2’=>’C.T. Alviso, R.W. Pekala, 1991, Lawrence Livermore National Laboratory Lab-Authored Report 216141.’),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘metal-doped_carbon_aerogel’=> array(
array(‘class’=>”),
array(‘composition’=>’C with metal nanoparticles of Fe, Co, Ni, or Cu’),
array(‘density_range’=>’0.02-0.04’),
array(‘surface_area’=>’500-800’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’C=2.1, Metal=5-35’),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Opaque black, shiny or matte’),
array(‘monolithicity’=>’Monolithic, charcoal like’),
array(‘flexibility’=>’Breaks like charcoal’),
array(‘gel_synthesis’=>’Polymerization of 2,4-dihydroxybenzene with formaldehyde, ion exchange of gel by soaking in metal salt’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>’1.0-10’),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Ted Baumann’),
array(‘major_players’=>’Ted Baumman, Ruowen Fu, Stephen A. Steiner III’),
array(‘special_properties’=>’Fe-doped carbon aerogels can catalyze nanotube growth, Ni-doped carbon aerogel contain graphitic nanoribbons’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘chromium_oxide_aerogel’=> array(
array(‘class’=>’Metal Oxide, Transition Metal’),
array(‘composition’=>’Cr2O3‘),
array(‘density_range’=>’0.28’),
array(‘surface_area’=>’490-520’),
array(‘pore_volume’=>’1.6-2.3’),
array(‘primary_particle_size’=>’5’),
array(‘average_pore_size’=>’11.0-18.0’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Dark green or blue’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Epoxide-assisted gelation of chromium nitrate or chloride’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>”),
array(‘major_players’=>’Alex Gash, Tom Tillotson’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Alexander E. Gash, Thomas M. Tillotson, Joe H. Satcher, Jr., Lawrence W. Hrubesh, Randall L. Simpson, J. Non-Crystalline Solids, 2001, 285, 22-28.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘iron_oxide_aerogel’=> array(
array(‘class’=>’Metal Oxide, Transition Metal’),
array(‘composition’=>’Fe2O3‘),
array(‘density_range’=>”),
array(‘surface_area’=>’390’),
array(‘pore_volume’=>’3.75’),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’23’),
array(‘transparency’=>’Partially translucent to opaque’),
array(‘appearance’=>’Rust red-brown’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Epoxide-assisted gelation of iron nitrate or chloride’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>”),
array(‘major_players’=>’Alex Gash, Tom Tillotson’),
array(‘special_properties’=>’Phase can be controlled through wet chemistry’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Thomas M. Tillotson, Alexander E. Gash, Randall L. Simpson, Lawrence W. Hrubesh, Joe H. Satcher, Jr., John F. Poco, J. Non-Crystalline Solids, 285 (1-3) 2001, 338-345.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘lanthanide_oxide_aerogel’=> array(
array(‘class’=>’Metal Oxide, Lanthanide Group’),
array(‘composition’=>’L2O3, where L=a lanthanide group metal’),
array(‘density_range’=>’0.18’),
array(‘surface_area’=>’354-382’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Transparent, color depends on metal oxide’),
array(‘appearance’=>’Oxides of holmium or erbium = pink, oxides of praseodymium or samarium = yellow, oxide of neodymium = purple, others Rayleigh scatter blue or white’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Epoxide-assisted gelation of lanthanide chloride’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>”),
array(‘major_players’=>’Tom Tillotson’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Nicholas Leventis, Plousia Vassilaras, Eve F. Fabrizio, Amala Dass, J. Mater. Chem., 2007, 17, 1502–1508.’),
array(‘reference_2’=>’T.M. Tillotson, W.E. Sunderland, I.W. Thomas, L.W. Hrubesh, 1993, Lawrence Livermore National Laboratory Lab-Authored Report 220798.’),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘molybdenum_oxide_aerogel’=> array(
array(‘class’=>’Metal Oxide, Transition Metal’),
array(‘composition’=>’MoO3‘),
array(‘density_range’=>’0.19-0.21’),
array(‘surface_area’=>’150-190’),
array(‘pore_volume’=>’0.4-3.4’),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’25-75’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Dark blue’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Rigid, friable’),
array(‘gel_synthesis’=>’Hydrolysis of molybdenum trichloride isopropoxide exchanged with acetonitrile ligands’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Winny Dong, Bruce Dunn’),
array(‘major_players’=>”),
array(‘special_properties’=>’Molybdenum oxide aerogels show reversible lithium intercolation up to 1.2 Li/Mo’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Winny Dong, Bruce Dunn, J. Non-Crystalline Solids, 1998, 225, 135-140.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘silica_x-aerogel,_isocyanate_crosslinked’=> array(
array(‘class’=>’Crosslinked, Inorganic’),
array(‘composition’=>’SiO2, coated with isocyanate shell’),
array(‘density_range’=>’0.5-0.6’),
array(‘surface_area’=>’140-160’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’18.8-20’),
array(‘transparency’=>’Foggy or opaque’),
array(‘appearance’=>’Blue cast from Rayleigh scattering or white/off-white’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Some flexibility’),
array(‘gel_synthesis’=>’Hydrolysis of silicon alkoxide, gel crosslinked with isocynate’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>’44-90’),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Nicholas Leventis’),
array(‘major_players’=>’Nicholas Leventis, Mary Ann Meador’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’N. Leventis, A. Palczer, L. McCorkle, G. Zhang, C. Sotiriou-Leventis J. Sol-Gel Sci. Tech. 2005, 35, 99-105.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘silica_x-aerogel,_isocyanate_crosslinked,_ambiently_dried’=> array(
array(‘class’=>’Crosslinked, Inorganic’),
array(‘composition’=>’SiO2, coated with isocyanate shell’),
array(‘density_range’=>’0.5-0.7’),
array(‘surface_area’=>’117-147’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’16.5-20.5’),
array(‘transparency’=>’Foggy or opaque’),
array(‘appearance’=>’Blue cast from Rayleigh scattering or white/off-white’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Some flexibility’),
array(‘gel_synthesis’=>’Hydrolysis of silicon alkoxide, gel crosslinked with isocynate’),
array(‘drying_method’=>’Evaporatively dried from pentane’),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>’53-97’),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Nicholas Leventis’),
array(‘major_players’=>’Nicholas Leventis, Mary Ann Meador’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’N. Leventis, A. Palczer, L. McCorkle, G. Zhang, C. Sotiriou-Leventis J. Sol-Gel Sci. Tech. 2005, 35, 99-105.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘lanthanide_oxide_x-aerogel,_isocyanate_crosslinked’=> array(
array(‘class’=>’Crosslinked, Inorganic’),
array(‘composition’=>’L2O3, where L=a lanthanide group metal, coated with isocyanate shell’),
array(‘density_range’=>’0.42’),
array(‘surface_area’=>’137-175’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’18.8-20’),
array(‘transparency’=>’Foggy or opaque’),
array(‘appearance’=>’Oxides of holmium or erbium = pink, oxides of praseodymium or samarium = yellow, oxide of neodymium = purple, others clear or white’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Somewhat flexible’),
array(‘gel_synthesis’=>’Epoxide-assisted gelation of lanthanide chloride followed by crosslinking with isocyante’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>’13.3-29.3’),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Nicholas Leventis’),
array(‘major_players’=>’Nicholas Leventis’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Nicholas Leventis, Plousia Vassilaras, Eve F. Fabrizio, Amala Dass, J. Mater. Chem., 2007, 17, 1502–1508.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘aerojello_(gelatin_aerogel)’=> array(
array(‘class’=>’Organic, Biological’),
array(‘composition’=>’Hydrolyzed Collagen’),
array(‘density_range’=>’0.04’),
array(‘surface_area’=>”),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’White, typically deformed from original gel shape’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Spongey’),
array(‘gel_synthesis’=>’Dissolution of gelatin powder in hot water followed by cooling’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Samuel Kistler’),
array(‘major_players’=>”),
array(‘special_properties’=>’Edible’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘aspen_spaceloft™_6200’=> array(
array(‘class’=>’Silica Composite’),
array(‘composition’=>’Hydrophobic Silica’),
array(‘density_range’=>’0.1’),
array(‘surface_area’=>’784’),
array(‘pore_volume’=>’3.1’),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Opaque white’),
array(‘appearance’=>”),
array(‘monolithicity’=>’Cast onto a fiber batting’),
array(‘flexibility’=>’Flexible blanket’),
array(‘gel_synthesis’=>’Hydrolysis of silicon alkoxide’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>’0.013’),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Aspen Aerogels’),
array(‘major_players’=>’George Gould’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘aspen_spaceloft™_6250’=> array(
array(‘class’=>’Silica Composite’),
array(‘composition’=>’Hydrophobic Silica’),
array(‘density_range’=>’0.1’),
array(‘surface_area’=>’775’),
array(‘pore_volume’=>’3.1’),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>”),
array(‘appearance’=>”),
array(‘monolithicity’=>’Cast onto a fiber batting’),
array(‘flexibility’=>’Flexible blanket’),
array(‘gel_synthesis’=>’Hydrolysis of silicon alkoxide’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>’0.012’),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Aspen Aerogels’),
array(‘major_players’=>’George Gould’),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>”),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘carbon_nanotube_aerogel’=> array(
array(‘class’=>’Carbon’),
array(‘composition’=>’Carbon nanotubes, with or without poly(vinyl alcohol) reinforcement’),
array(‘density_range’=>’0.01-0.06’),
array(‘surface_area’=>”),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Black’),
array(‘monolithicity’=>’Monolithic’),
array(‘flexibility’=>’Somewhat spongey’),
array(‘gel_synthesis’=>’Agglomeration of surfactant-dispersed carbon nanotubes with or without poly(vinyl alcohol)’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>’10-7-10-2‘),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Mateusz Bryning, Arjun Yodh’),
array(‘major_players’=>”),
array(‘special_properties’=>”),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Mateusz B. Bryning, Daniel E. Milkie, Mohammad F. Islam, Lawrence A. Hough, James M. Kikkawa, Arjun G. Yodh, Advanced Materials, 2007, 19, 5, 661-664.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘iron_aerogel’=> array(
array(‘class’=>’Metal’),
array(‘composition’=>’Fe, Fe3C’),
array(‘density_range’=>’0.046’),
array(‘surface_area’=>’163-416’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’25-30’),
array(‘average_pore_size’=>”),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Dark, rusty brown’),
array(‘monolithicity’=>’Monolithic, tends to crack’),
array(‘flexibility’=>’Not flexible’),
array(‘gel_synthesis’=>’Resorcinol-formaldehyde polymerization and epoxide-assisted gelation of iron chloride with epichlorohydrin in the same solution’),
array(‘drying_method’=>’Supercritical CO2 followed by pyrolysis at 400°C-1050°C under inert gas’),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Nicholas Leventis’),
array(‘major_players’=>”),
array(‘special_properties’=>’Hybrid resorcinol-formaldehyde/iron oxide aerogels reduce to iron aerogels upon pyrolysis under inert atmosphere, ratio of resorcniol-formldehyde to iron oxide must be one to one, iron aerogels are magnetic’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’Nicholas Leventis, Naveen Chandrasekaran, Chariklia Sotiriou-Leventis, Arif Mumtaz, J. Mater. Chem., 2009, 19, 63–65’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘iron_nanofoam’=> array(
array(‘class’=>’Metal’),
array(‘composition’=>’Fe’),
array(‘density_range’=>’0.011-0.04’),
array(‘surface_area’=>’10-258’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’14-23’),
array(‘average_pore_size’=>’20-200; 1000-3000’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Gray’),
array(‘monolithicity’=>’Monolithic, ashy’),
array(‘flexibility’=>’Ashy, not flexible’),
array(‘gel_synthesis’=>’No gel precursor, formed directly from combustion of FeBTA complex under Ar’),
array(‘drying_method’=>”),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>”),
array(‘major_players’=>”),
array(‘special_properties’=>’Iron nanofoams are magnetic’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’B.C. Tappan, M.H. Huynh, M.A. Hiskey, D.E. Chavez, E.P. Luther, J.T. Mang, S.F. Son, J. Am. Chem. Soc., 2006, 128, 6589-6594.’),
array(‘reference_2’=>”),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘cadmium_selenide_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide’),
array(‘composition’=>’CdSe’),
array(‘density_range’=>”),
array(‘surface_area’=>’106-124’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’2.5 – 4.0 [1]’),
array(‘average_pore_size’=>’16-29’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Orange to red, depending on particle size’),
array(‘monolithicity’=>’Can be monolithic but fragile’),
array(‘flexibility’=>’Brittle’),
array(‘gel_synthesis’=>’Oxidative removal of thiolate from preformed nanoparticles’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock & Indika Arachchige’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’Fluoresces green. Aerogels exhibit the quantum confinement properties of the nanoparticle precursors with an optical bandgap dependent on (1) primary particle size; (2) aerogel density; (3) annealing protocol (if any). Typical ranges are from 2.15-2.25 eV. Aerogels also exhibit associated band edge photoluminescence.’),
array(‘note_1’=>’from TEM and XRD’),
array(‘note_2’=>”),
array(‘reference_1’=>’J. L. Mohanan, I. U. Arachchige, S. L. Brock, “Porous Semiconductor Chalcogenide Aerogels,” Science, 2005, 307, 397-401.’),
array(‘reference_2’=>’Gel synthesis: Gacoin, J. Sol-Gel Sci. Technol. 1998, 13, 61’),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘cadmium_sulfide_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide’),
array(‘composition’=>’CdS’),
array(‘density_range’=>’0.07’),
array(‘surface_area’=>’239-250’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’2.0-5.0’),
array(‘average_pore_size’=>’29-30’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Yellow’),
array(‘monolithicity’=>’Can be monolithic but fragile’),
array(‘flexibility’=>’Brittle’),
array(‘gel_synthesis’=>’Oxidative removal of thiolate from preformed nanoparticles’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock & Jaya L. Mohanan’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’Aerogels exhibit the quantum confinement properties of the nanoparticle precursors with an optical bandgap dependent on (1) primary particle size; (2) aerogel density; (3) annealing protocol (if any). Typical ranges are from 2.2-2.7 eV. Aerogels also exhibit associated band edge photoluminescence.’),
array(‘note_1’=>’from TEM and XRD’),
array(‘note_2’=>”),
array(‘reference_1’=>’Primary Reference: J. L. Mohanan, S. L. Brock, “A New Addition to the Aerogel Community: Unsupported CdS Aerogels with Tunable Optical Properties,” Journal of Non-Crystalline Solids, 2004, 350, 1-8. ‘),
array(‘reference_2’=>’Gel synthesis: Gacoin, J. Sol-Gel Sci. Technol. 1998, 13, 61’),
array(‘reference_3’=>’Particles exhibit cubic (zinc blende) structure’),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘zinc_sulfide_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide’),
array(‘composition’=>’ZnS’),
array(‘density_range’=>’0.35’),
array(‘surface_area’=>’182-202’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’2.5-4.0’),
array(‘average_pore_size’=>’15-30’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’White’),
array(‘monolithicity’=>’Can be monolithic but fragile’),
array(‘flexibility’=>’Brittle’),
array(‘gel_synthesis’=>’Oxidative removal of thiolate from preformed nanoparticles’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock, Jaya L. Mohanan, and Indika Arachchige’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’Aerogels exhibit the quantum confinement properties of the nanoparticle precursors with an optical bandgap dependent on (1) primary particle size; (2) aerogel density; (3) annealing protocol (if any). A typical value is 3.85 eV.’),
array(‘note_1’=>’from TEM and XRD’),
array(‘note_2’=>”),
array(‘reference_1’=>’J. L. Mohanan, I. U. Arachchige, S. L. Brock, “Porous Semiconductor Chalcogenide Aerogels,” Science, 2005, 307, 397-401.’),
array(‘reference_2’=>’Gel synthesis: Gacoin, J. Sol-Gel Sci. Technol. 1998, 13, 61’),
array(‘reference_3’=>’Particles exhibit cubic (zinc blende) structure’),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘lead_sulfide_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide’),
array(‘composition’=>’PbS’),
array(‘density_range’=>”),
array(‘surface_area’=>’119-141’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’2.5-4.0’),
array(‘average_pore_size’=>’21-45’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Dark brown’),
array(‘monolithicity’=>’Can be monolithic but fragile’),
array(‘flexibility’=>’Brittle’),
array(‘gel_synthesis’=>’Oxidative removal of thiolate from preformed nanoparticles’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock, Jaya L. Mohanan, and Indika Arachchige’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’Aerogels exhibit the quantum confinement properties of the nanoparticle precursors with an optical bandgap dependent on (1) primary particle size; (2) aerogel density; (3) annealing protocol (if any). A typical value is 0.37 eV. ‘),
array(‘note_1’=>’from TEM and XRD’),
array(‘note_2’=>”),
array(‘reference_1’=>’J. L. Mohanan, I. U. Arachchige, S. L. Brock, “Porous Semiconductor Chalcogenide Aerogels,” Science, 2005, 307, 397-401.’),
array(‘reference_2’=>’Gel synthesis: Gacoin, J. Sol-Gel Sci. Technol. 1998, 13, 61’),
array(‘reference_3’=>’Particles exhibit cubic (zinc blende) structure’),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘cadmium_selenide/zinc_sulfide_composite_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide, Composite’),
array(‘composition’=>’CdSe core nanoparticles wrapped with ZnS shells (Cd:Zn = 1:3.4)’),
array(‘density_range’=>’0.08’),
array(‘surface_area’=>’188-234’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>’4.4-5.7’),
array(‘average_pore_size’=>’21-23’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’Orange with yellow-green emission (4.4 nm CdSe core); red with orange emission (5.1 nm CdSe core); brown with red emission (5.6 nm CdSe core)’),
array(‘monolithicity’=>’Can be monolithic but fragile’),
array(‘flexibility’=>’Brittle’),
array(‘gel_synthesis’=>’Oxidative removal of thiolate from preformed nanoparticles’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock & Indika Arachchige’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’Aerogels exhibit the quantum confinement properties of the nanoparticle precursors with an optical bandgap dependent on the particle size of the CdSe cores. Unlike “naked” CdSe aerogels, the band-edge photoluminescence is strong and there is no evidence of trap-state features ‘),
array(‘note_1’=>’from TEM and XRD’),
array(‘note_2’=>”),
array(‘reference_1’=>’I. U. Arachchige, S. L. Brock “Highly Luminescent Quantum Dot Monoliths” Journal of the American Chemical Society, 2007, 129, 1840-1841.’),
array(‘reference_2’=>’Gel synthesis: Gacoin, J. Sol-Gel Sci. Technol. 1998, 13, 62’),
array(‘reference_3’=>’Particles were prepared from high temperature methods and exhibit the hexagonal (wurtzite) structure type.’),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
‘germanium_sulfide_aerogel’=> array(
array(‘class’=>’Metal Chalcogenide’),
array(‘composition’=>’GeSx (x=1.7-2.5)’),
array(‘density_range’=>”),
array(‘surface_area’=>’677-755’),
array(‘pore_volume’=>”),
array(‘primary_particle_size’=>”),
array(‘average_pore_size’=>’12.0-13.0’),
array(‘transparency’=>’Opaque’),
array(‘appearance’=>’White’),
array(‘monolithicity’=>’No’),
array(‘flexibility’=>”),
array(‘gel_synthesis’=>’Thiolysis of germanium ethoxide’),
array(‘drying_method’=>’Supercritical CO2‘),
array(‘thermal_conductivity_at_room_temperature’=>”),
array(‘electrical_conductivity’=>”),
array(‘index_of_refraction’=>”),
array(‘dielectric_constant_(dc)’=>”),
array(‘young\’s_modulus’=>”),
array(‘coefficient_of_thermal_expansion’=>”),
array(‘compressive_strength’=>”),
array(‘speed_of_sound’=>”),
array(‘invented_by’=>’Stephanie L. Brock & Kennedy Kalebaila’),
array(‘major_players’=>’Stephanie L. Brock’),
array(‘special_properties’=>’GeSx aerogels are amorphous with extremely high surface areas relative to other chalcogenide aerogels. GeSx gels undergo oxidation and formation of GeO2 if air is introduced to the wet gel; aerogels do not form crystalline GeO2 upon exposure to air.’),
array(‘note_1’=>”),
array(‘note_2’=>”),
array(‘reference_1’=>’K. K. Kalebaila, D. G. Georgiev, S. L. Brock “Synthesis and Characterization of Germanium Sulfide Aerogels” Journal of Non-Crystalline Solids, 2006, 352, 232-240.’),
array(‘reference_2’=>’Stanic et al., J. Mater. Res. 1996, 11, 363.’),
array(‘reference_3’=>”),
array(‘reference_4’=>”),
array(‘reference_5’=>”),
),
);
echo “
echo “
Values\n”; |
Units\n”; \n”; | ||
“; echo $atype; echo “\n”; echo “ | “; echo $materialsproperties[‘units’][$i][$a]; echo “ |
$btype | – |
“;
echo “
“;
?>